CHEMINDIA "InstaMix" Continuous Flow Reactors

Model: CFR

for Continuous Flow Reactions

Principle of Mixing No. of Reactants Phases Applications

Material Of Construction

Maximum Pressure
Internal Volume
Flow rate
Production Capacity
Temperature Range
Heating / Cooling method

: Split And Recombine (SAR) Principle

: 2 or 3 Reactants

: Liquid -- Liquid; Liquid - Gas; Liquid-- Slurry : Mixing of miscible liquids or creating dispersion

of immiscible fluids, oils, emulsions.

: SS316L, Titanium, Inconel

: 10,000 psi : 3ml ~ 100ml

: 1ml/ min \sim 3 Liters/min : 5 t/year \sim 1500 t/ year

: - 80 °c to 300°c

: Non Jacketed

Either by installing in CHEMINDIA's Micro Reaction Chamber or by dipping in suitable

thermostatic bath

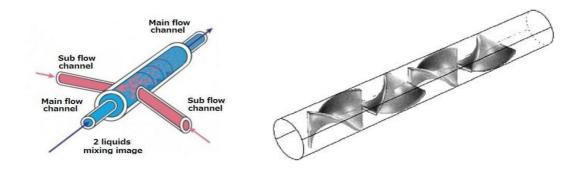
Jacketed

By connecting to thermostatic circulator

Inlet & Outlet tubing : 1/8" tube connectors (Option 1/16")

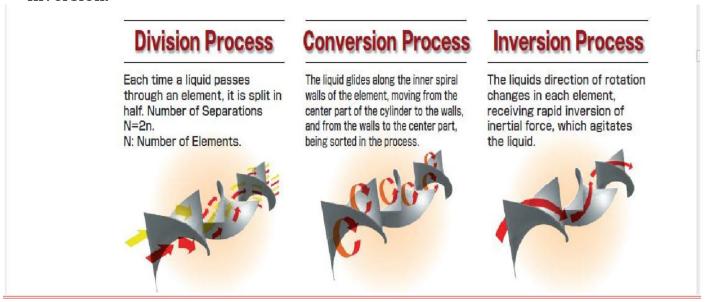
^{***} Excellent and Effective Heat & Mass Transfer for better yields and purity

CHEMINDIA "InstaMix" Continuous Flow Reactors


Model	Maximum	Reactor	Production	Temperature
	Flow rate	Volume**	Capacity t/y	Range
Lab*	10ml/min	3 ml	5 t/y	-80°C ~ +300° C
CFR-I*	100ml/min	5 ml	50 t/y	-80°C ∼ +300° C
CFR-II*	200ml/min	25 ml	100 t/y	-80°C ~ +300° C
CFR-III*	1 L/ min	50 ml	500 t/y	-80°C ∼ +300° C
CFR-IV*	3 L/min	100 ml	1500 t/y	-80°C ~ +300° C

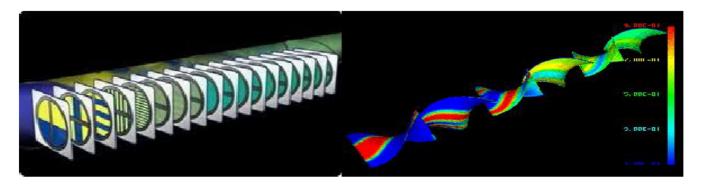
* Material of Construction: SS316L, Titanium, Inconel

** Higher volume Reactors can be supplied


Pressure Range: 0 ~ 400 bar

"InstaMix" Principle: Split And Recombine (SAR) Mixing preceded by Turbulent Flow

Turbulent Flow Mixer creates turbulence flow in flow path.


SAR Mixers efficiently mix through a process of Division, Conversion and Inversion.

• Low Viscosity substances with mutual solubility are mostly mixed through the **Inversion** step

Ex: alkali & acid neutralization

- Even with two low viscosity substances, without mutual solubility, they are mostly dispersed during the **Conversion** step Ex: Oil dispersion into water
- High viscosity substances are mostly mixed during the **Division and Conversion** steps

Simulation of Division, Conversion and Inversion Process

Accessories:

1. **Heating or Cooling Devices:** To heat or cool the reactants in Micro Reactor

Water / Oil Bath: Temperature range: Ambient to +250° C; Accuracy: ±0.1° C

Micro Reaction Chamber: Temperature Range: Ambient ∼ +300°c

Accuracy: ±0.1°c up to 100°c

Accuracy: ±1°c from 100°c to 300°c

Low/High Temperature Liquid Circulators: Temperature Range: -40°c ~ +100°c

Accuracy: ±0.1°c

2. Coils: T shaped and Y shaped coils with different residence times are available.

3. Online Monitoring: UV-Vis Detection(190nm ~ 600nm)